By Topic

Dual-tree complex wavelet hidden Markov tree model for image denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yan, F.-X. ; Nat. Univ. of Defense Technol., Changsha ; Cheng, L.-Z. ; Peng, S.-L.

A new non-training complex wavelet hidden Markov tree (HMT) model, which is based on the dual-tree complex wavelet transform and a fast parameter estimation technique, is proposed for image denoising. This new model can mitigate the two problems (high computational cost and shift-variance) of the conventional wavelet HMT model simultaneously. Experiments show that the denoising approach with this new model achieves better performance than other related HMT- based image denoising algorithms.

Published in:

Electronics Letters  (Volume:43 ,  Issue: 18 )