By Topic

Microwave-Frequency Experiments Validate Optical Simulation Tools and Demonstrate Novel Dispersion-Tailored Photonic Crystal Waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jan-Michael Brosi ; Univ. of Karlsruhe, Karlsruhe ; Juerg Leuthold ; Wolfgang Freude

A new experimental method in the microwave regime is introduced to verify the performance of guided-wave photonic devices with high-index contrast. In particular, a novel broadband slow-light or high-dispersion photonic-crystal (PC) waveguide (WG) is studied. By scaling up the structure dimensions, the equivalent fabrication uncertainty can be reduced to 0.5 nm, which, in combination with the available microwave equipment, allows the conduction of reference measurements with a precision that is not possible in optics. Based on these experiments, several numerical band calculation methods for designing the PC-WGs are evaluated, and out of three accurate methods, we identify a fast tool. Furthermore, we check the accuracy of PC device simulations with the finite integration technique using the aforementioned PC-WG. We demonstrate that the device exhibits a region with a low group velocity of 4% of the vacuum speed of light and a region with a high chromatic dispersion of 4 ps/(mm ldr nm), both in a 1-THz bandwidth. For the first time, we quantify by experiments that a random disorder of the hole radii by 5%, which can be caused by fabrication imperfections, does not significantly degrade the group velocity behavior.

Published in:

Journal of Lightwave Technology  (Volume:25 ,  Issue: 9 )