By Topic

Sensor Fusion for Predicting Vehicles' Path for Collision Avoidance Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Polychronopoulos, A. ; Nat. Tech. Univ. of Athens, Athens ; Tsogas, M. ; Amditis, A.J. ; Andreone, L.

Path prediction is the only way that an active safety system can predict a driver's intention. In this paper, a model-based description of the traffic environment is presented - both vehicles and infrastructure - in order to provide, in real time, sufficient information for an accurate prediction of the ego-vehicle's path. The proposed approach is a hierarchical-structured algorithm that fuses traffic environment data with car dynamics in order to accurately predict the trajectory of the ego-vehicle, allowing the active safety system to inform, warn the driver, or intervene when critical situations occur. The algorithms are tested with real data, under normal conditions, for collision warning (CW) and vision-enhancement applications. The results clearly show that this approach allows a dynamic situation and threat assessment and can enhance the capabilities of adaptive cruise control and CW functions by reducing the false alarm rate.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:8 ,  Issue: 3 )