By Topic

Factors that Affect Classification Performance in EEG based Brain-Computer Interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Argunsah, A.O. ; Yapay Gorme ve Oruntu Analizi Lab., Sabanci Univ., Istanbul, Turkey ; Curuklu, A.B. ; Cetin, M. ; Ercil, A.

In this paper, some of the factors that affect classification performance of EEG based Brain-Computer Interfaces (BCI) is studied. Study is specified on P300 speller system which is also an EEG based BCI system. P300 is a physiological signal that represents a response of brain to a given stimulus which occurs right 300 ms after the stimulus onset. When this signal occurs, it changes the continuous EEG some micro volts. Since this is not a very distinguished change, some other physiological signals (movement of muscles and heart, blinking or other neural activities) may distort this signal. In order to understand if there is really a P300 component in the signal, consecutive P300 epochs are averaged over trials. In this study, we have been tried two different multi channel data handling methods with two different frequency windows. Resulted data have been classified using Support Vector Machines (SVM). It has been shown that proposed method has a better classification performance.

Published in:

Signal Processing and Communications Applications, 2007. SIU 2007. IEEE 15th

Date of Conference:

11-13 June 2007