By Topic

A Local Binary Patterns and Shape Priors Based Texture Segmentation Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tekeli, E. ; Muhendislik ve Doga Bilimleri Fak., Sabanci Univ., Istanbul ; Cetin, M. ; Ercil, A.

We propose a shape and data driven texture segmentation method using local binary patterns (LBP) and active contours. In particular, we pass textured images through a new LBP-based filter, which produces non-textured images. In this "filtered" domain each textured region of the original image exhibits a characteristic intensity distribution. In this domain we pose the segmentation problem as an optimization problem in a Bayesian framework. The cost functional contains a data-driven term, as well as a term that brings in information about the shapes of the objects to be segmented. We solve the optimization problem using level set-based active contours. Our experimental results on synthetic and real textures demonstrate the effectiveness of our approach in segmenting challenging textures as well as its robustness to missing data and occlusions.

Published in:

Signal Processing and Communications Applications, 2007. SIU 2007. IEEE 15th

Date of Conference:

11-13 June 2007