Cart (Loading....) | Create Account
Close category search window
 

Design of a Reflection-Type Phase Shifter With Wide Relative Phase Shift and Constant Insertion Loss

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chien-San Lin ; Nat. Chung Cheng Univ., Chiayi ; Sheng-Fuh Chang ; Chia-Chan Chang ; Yi-Hao Shu

reflection-type phase shifter with constant insertion loss over a wide relative phase-shift range is presented. This important feature is attributed to the salient integration of an impedance-transforming quadrature coupler with equalized series-resonated varactors. The impedance-transforming quadrature coupler is used to increase the maximal relative phase shift for a given varactor with a limited capacitance range. When the phase is tuned, the typical large insertion-loss variation of the phase shifter due to the varactor parasitic effect is minimized by shunting the series-resonated varactor with a resistor Rp. A set of closed-form equations for predicting the relative phase shift, insertion loss, and insertion-loss variation with respect to the quadrature coupler and varactor parameters is derived. Three phase shifters were implemented with a silicon varactor of a restricted capacitance range of Cv,min = 1.4 pF and Cv,max = 8 pF, wherein the parasitic resistance is close to 2 Omega. The measured insertion-loss variation is 0.1 dB over the relative phase-shift tuning range of 237deg at 2 GHz and the return losses are better than 20 dB, excellently agreeing with the theoretical and simulated results.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 9 )

Date of Publication:

Sept. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.