By Topic

High Extinction Ratio Mach–Zehnder Modulator Applied to a Highly Stable Optical Signal Generator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kiuchi, H. ; Nat. Astron. Obs. of Japan, Tokyo ; Kawanishi, T. ; Yamada, M. ; Sakamoto, T.
more authors

Research into optical modulators has made remarkable progress in recent years. This paper discusses the possibility of applying the high extinction ratio optical modulator to a high-stability and high-frequency (over 100 GHz) optical reference signal generator. High-frequency reference signals are generated by a highly stable optical two-tone generator, which is used for high-rate communication and astronomical application. One method to generate two optical signals is producing them from a pair of laser sources using an optical phase-locked loop for feed back control; however, the optical phase-locked loop has a stability problem in its operation. A good alternative method to the optical phase-locked scheme is the LiNbO3 Mach-Zehnder (MZ) optical intensity modulator, which is capable of generating two highly stable optical signals (upper sideband and lower sideband components) by applying a sinusoidal microwave signal to an input laser signal. The two optical signals require phase stability better than 10-13 in the Allan standard deviation, vibration robustness, and polarization maintaining capability. The signal coherence loss estimated from the phase stability of the two optical signals generated by the MZ modulator shows that the optical MZ modulator has the ability to generate highly stable optical signals.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 9 )