Cart (Loading....) | Create Account
Close category search window
 

Self-Consistent Electrothermal Modeling of Class A, AB, and B Power GaN HEMTs Under Modulated RF Excitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper presents an accurate and flexible approach to the self-consistent electrothermal modeling of III-N-based HEMTs, combining a temperature-dependent electrical compact model with a novel behavioral nonlinear dynamic thermal model, suitable for circuit-level simulations. The behavioral thermal model is extracted, according to a Wiener-like approach, from a full-scale, finite-element-method-based time-domain 3-D solution of the heat equation. The electrothermal model, validated against dc, pulsed dc, -parameter and large-signal nonlinear measurements, is exploited to assess the impact of thermal memory effects on the device RF performances. In particular, the model allows for a detailed analysis and interpretation of the thermal memory effects on intermodulation distortion. Finally, the proposed approach enables to analyze such features for different thermal mountings, thus providing useful indications for technology assessment.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 9 )

Date of Publication:

Sept. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.