By Topic

Sensitivity Analysis of the Split-Complex Valued Multilayer Perceptron Due to the Errors of the i.i.d. Inputs and Weights

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sheng-Sung Yang ; Nat. Central Univ., Chung-Li ; Chia-Lu Ho ; Sammy Siu

In this paper, we analyze the sensitivity of a split-complex multilayer perceptron (split-CMLP) due to the errors of the inputs and the connection weights between neurons. For simplicity, all the inputs and weights studied here are independent and identically distributed (i.i.d.). To develop an algorithm to estimate the sensitivity of the entire split-CMLP, we compute statistically the sensitivity by using the central limit theorem (CLT). The results show that the sensitivity is affected by the number of the layers and the number of the neurons adopted in each layer. We derive a theoretical estimation of the sensitivity. Several numerical results of the sensitivity for the split-CMLP are presented, and they match the theoretical ones. The agreement between the theoretical results and experimental results verifies the feasibility of the proposed algorithm. Thus, we not only analyze the sensitivity of the split-CMLP due to the errors of the i.i.d. inputs and weights, but also develop an efficient algorithm to estimate the sensitivity.

Published in:

IEEE Transactions on Neural Networks  (Volume:18 ,  Issue: 5 )