By Topic

A Modified Probabilistic Neural Network for Partial Volume Segmentation in Brain MR Image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tao Song ; California Univ. at San Diego, San Diego ; Jamshidi, M.M. ; Lee, R.R. ; Mingxiong Huang

A modified probabilistic neural network (PNN) for brain tissue segmentation with magnetic resonance imaging (MRI) is proposed. In this approach, covariance matrices are used to replace the singular smoothing factor in the PNN's kernel function, and weighting factors are added in the pattern of summation layer. This weighted probabilistic neural network (WPNN) classifier can account for partial volume effects, which exist commonly in MRI, not only in the final result stage, but also in the modeling process. It adopts the self-organizing map (SOM) neural network to overly segment the input MR image, and yield reference vectors necessary for probabilistic density function (pdf) estimation. A supervised "soft" labeling mechanism based on Bayesian rule is developed, so that weighting factors can be generated along with corresponding SOM reference vectors. Tissue classification results from various algorithms are compared, and the effectiveness and robustness of the proposed approach are demonstrated.

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 5 )