Cart (Loading....) | Create Account
Close category search window

A New Constrained Independent Component Analysis Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
De-Shuang Huang ; Chinese Acad. of Sci., Hefei ; Jian-Xun Mi

Constrained independent component analysis (cICA) is a general framework to incorporate a priori information from problem into the negentropy contrast function as constrained terms to form an augmented Lagrangian function. In this letter, a new improved algorithm for cICA is presented through the investigation of the inequality constraints, in which different closeness measurements are compared. The utility of our proposed algorithm is demonstrated by the experiments with synthetic data and electroencephalogram (EEG) data.

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 5 )

Date of Publication:

Sept. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.