By Topic

Local Model Network Identification With Gaussian Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gregorcic, G. ; Anstalt fur Verbrennungskraftmaschinen List (AVL List GMBH), Graz ; Lightbody, G.

A Bayesian Gaussian process (GP) modeling approach has recently been introduced to model-based control strategies. The estimate of the variance of the predicted output is the most useful advantage of GPs in comparison to neural networks (NNs) and fuzzy models. However, the GP model is computationally demanding and nontransparent. To reduce the computation load and increase transparency, a local linear GP model network is proposed in this paper. The proposed methodology combines the local model network principle with the GP prior approach. A novel algorithm for structure determination and optimization is introduced, which is widely applicable to the training of local model networks. The modeling procedure of the local linear GP (LGP) model network is demonstrated on an example of a nonlinear laboratory scale process rig.

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 5 )