By Topic

Detecting Fault Modules Applying Feature Selection to Classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

At present, automated data collection tools allow us to collect large amounts of information, not without associated problems. This paper, we apply feature selection to several software engineering databases selecting attributes with the final aim that project managers can have a better global vision of the data they manage. In this paper, we make use of attribute selection techniques in different datasets publicly available (PROMISE repository), and different data mining algorithms for classification to defect faulty modules. The results show that in general, smaller datasets with less attributes maintain or improve the prediction capability with less attributes than the original datasets.

Published in:

Information Reuse and Integration, 2007. IRI 2007. IEEE International Conference on

Date of Conference:

13-15 Aug. 2007