By Topic

Adapting Ratings in Memory-Based Collaborative Filtering using Linear Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kunegis, J. ; Tech. Univ. Berlin, Berlin ; Albayrak, S.

We show that the standard memory-based collaborative filtering rating prediction algorithm using the Pearson correlation can be improved by adapting user ratings using linear regression. We compare several variants of the memory-based prediction algorithm with and without adapting the ratings. We show that in two well-known publicly available rating datasets, the mean absolute error and the root mean squared error are reduced by as much as 20% in all variants of the algorithm tested.

Published in:

Information Reuse and Integration, 2007. IRI 2007. IEEE International Conference on

Date of Conference:

13-15 Aug. 2007