By Topic

Analysis and implementation of a soft switching interleaved forward converter with current doubler rectifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lin, B.-R. ; Nat. Yunlin Univ. of Sci. & Technol., Yunlin ; Chiang, H.-K.

A soft switching interleaved forward converter with current doubler rectifier is presented. Active clamp circuit is used in the primary winding of transformers to recycle the energy stored in the leakage inductor and the magnetising inductor so that the voltage stresses of switches are reduced. The leakage inductance of transformers, the magnetising inductance and the clamp capacitance are resonant to achieve zero-voltage switching (ZVS) of clamp switches. The resonance between the leakage inductance of transformers and output capacitance of switch will achieve ZVS operation for the main switches in the proposed converter. The interleaved operation can reduce the current ripple on the output capacitor. Two current doubler rectifiers with ripple current cancellation are connected in parallel at the output side to reduce the current stress of the secondary winding of the transformer. All these features make the proposed converter suitable for the DC-DC converter with high output current. The operation principle and system analysis of the proposed converter are provided in detail. Finally, experimental results, taken from a laboratory prototype rated at 125 W, are presented to verify the feasibility of the proposed converter.

Published in:

Electric Power Applications, IET  (Volume:1 ,  Issue: 5 )