By Topic

Transformation of a Mamdani FIS to First Order Sugeno FIS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Javad Jassbi ; Azad Uninversity Science & Research Campus, Hesarak , Tehran, Iran ; S. H. Alavi ; Paulo J. A. Serra ; Rita A. Ribeiro

In many decision support applications, it is important to guarantee the expressive power, easy formalization and interpretability of Mamdani-type fuzzy inference systems (FIS), while ensuring the computational efficiency and accuracy of Sugeno-type FIS. Hence, in this paper we present an approach to transform a Mamdani-type FIS into a Sugeno-type FIS. We consider the problem of mapping Mamdani FIS to Sugeno FIS as an optimization problem and by determining the first order Sugeno parameters, the transformation is achieved. To solve this optimization problem we compare three methods: least squares, genetic algorithms and an adaptive neuro-fuzzy inference system. An illustrative example is presented to discuss the approaches.

Published in:

2007 IEEE International Fuzzy Systems Conference

Date of Conference:

23-26 July 2007