By Topic

Multidisciplinary Placement Optimization of Heat Generating Electronic Components on a Printed Circuit Board in an Enclosure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tohru Suwa ; Stevens Inst. of Technol., Hoboken ; Hamid Hadim

A multidisciplinary placement optimization methodology for heat generating electronic components on a printed circuit board (PCB) subjected to forced convection in an enclosure is presented. In this methodology, thermal, electrical, and placement criteria involving junction temperature, wiring density, line length for high frequency signals, and critical component location are optimized simultaneously using the genetic algorithm. A board-level thermal performance prediction methodology based on channel flow forced convection boundary conditions is developed. The methodology consists of a combination of artificial neural networks (ANNs) and a superposition method that is able to predict PCB surface and component junction temperatures in a much shorter calculation time than the existing numerical methods. Three ANNs are used for predicting temperature rise at the PCB surface caused by a single heat source at an arbitrary location on the board, while temperature rise due to multiple heat sources is calculated using a superposition method. Compact thermal models are used for the electronic components thermal modeling. Using this optimization methodology, large calculation time reduction is achieved without losing accuracy. To demonstrate its capabilities, the present methodology is applied to a test case involving multiple heat generating component placement optimization on a PCB.

Published in:

IEEE Transactions on Components and Packaging Technologies  (Volume:30 ,  Issue: 3 )