By Topic

Performance Analysis of Pin-Fin Heat Sinks With Confined Impingement Cooling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hung-Yi Li ; Huafan Univ., Taipei ; Ming-Hung Chiang ; Kuan-Ying Chen

This work assesses the performance of pin-fin heat sinks with confined impingement cooling using numerical simulation. The extent to which the Reynolds number, the height and the width of the fins, the nozzle-to-heat sink distance, the thermal conductivity, the upper confining plate and the fin number affect the thermal resistance are considered. The work shows that increasing the Reynolds number reduces the thermal resistance, but the effect decreases slowly as the Reynolds number increases. Although increasing the fin height can reduce the thermal resistance, reduction decreases. The fin width that is associated with the minimum thermal resistance increases with the Reynolds number. The optimal nozzle-to-heat sink distance increases with the Reynolds number. The thermal resistance decreases with an increasing thermal conductivity; however, the drop in the thermal resistance becomes smaller. The presence of the upper confining plate increases the thermal resistance. Additionally, the thermal resistance initially decreases and then increases slowly as the fin number increases.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:30 ,  Issue: 3 )