Cart (Loading....) | Create Account
Close category search window

Energy-Efficient Wireless Packet Scheduling with Quality of Service Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhong, X. ; Wayne State University, Detroit ; Cheng-Zhong Xu

In this paper, we study the problem of packet scheduling in a wireless environment with the objective of minimizing the average transmission energy expenditure under individual packet delay constraints. Most past studies assumed that the input arrivals followed a Poisson process or were statistically independent. However, traffic from a real source typically has strong time correlation. We model a packet scheduling and queuing system for a general input process in linear time-invariant systems. We propose an energy-efficient packet scheduling policy that takes the correlation into account. Meanwhile, a slower transmission rate implies that packets stay in the transmitter for a longer time, which may result in unexpected transmitter overload and buffer overflow. We derive the upper bounds of the maximum transmission rate under an overload probability and the upper bounds of the required buffer size under a packet drop rate. Simulation results show that the proposed scheduler improves up to 15 percent in energy savings compared with the policies that assume statistically independent input. Evaluation of the bounds in providing QoS control shows that both deadline misses and packet drops can be effectively bounded by a predefined constraint.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:6 ,  Issue: 10 )

Date of Publication:

Oct. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.