By Topic

An Analytical Model for the Threshold Voltage Shift Caused by Two-Dimensional Quantum Confinement in Undoped Multiple-Gate MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Granzner, R. ; Technische Univ. Ilmenau, Ilmenau ; Schwierz, F. ; Polyakov, V.M.

An analytical model describing the effects of 2-D quantum-mechanical carrier confinement on the threshold voltage Vth of multiple-gate MOSFETs with rectangular cross section is developed. The model is verified by a comparison with self-consistent solutions of 1-D and 2-D Schroumldinger and Poisson equations. It is shown that: 1) the model results asymptotically approach the case of 1-D confinement in single-gate silicon-on-insulator or double-gate MOSFETs if one body dimension becomes larger than 20 nm and 2) the effect of 2-D confinement is remarkably stronger than a simple combination of two 1-D quantization effects.

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 9 )