By Topic

Scaling Limits of Double-Gate and Surround-Gate Z-RAM Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Butt, N.Z. ; Purdue Univ., West Lafayette ; Alam, M.A.

We consider the scaling of the capacitorless single-transistor [zero-capacitor RAM (Z-RAM)] dynamic RAM (DRAM) cells having surround-gate and double-gate structures. We find that the scaling is limited to the channel length of approximately 25 nm for both types of cells, which is somewhat more pessimistic than previously believed. The mechanisms that are found to be of most importance in imposing the scaling limits are as follows: 1) short-channel effects; 2) quantum confinement of carriers in the body; and 3) band-to-band tunneling at the source/drain-to-body junctions. Like other DRAM cells, practical considerations such as the process variations in cell dimensions, random doping fluctuations, and single-event upsets are likely to remain as important scaling concerns for Z-RAM cells.

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 9 )