By Topic

Multiscale Poisson Intensity and Density Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Willett, R.M. ; Duke Univ., Durham ; Nowak, R.D.

The nonparametric Poisson intensity and density estimation methods studied in this paper offer near minimax convergence rates for broad classes of densities and intensities with arbitrary levels of smoothness. The methods and theory presented here share many of the desirable features associated with wavelet-based estimators: computational speed, spatial adaptivity, and the capability of detecting discontinuities and singularities with high resolution. Unlike traditional wavelet-based approaches, which impose an upper bound on the degree of smoothness to which they can adapt, the estimators studied here guarantee nonnegativity and do not require any a priori knowledge of the underlying signal's smoothness to guarantee near-optimal performance. At the heart of these methods lie multiscale decompositions based on free-knot, free-degree piecewise-polynomial functions and penalized likelihood estimation. The degrees as well as the locations of the polynomial pieces can be adapted to the observed data, resulting in near-minimax optimal convergence rates. For piecewise-analytic signals, in particular, the error of this estimator converges at nearly the parametric rate. These methods can be further refined in two dimensions, and it is demonstrated that platelet-based estimators in two dimensions exhibit similar near-optimal error convergence rates for images consisting of smooth surfaces separated by smooth boundaries.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 9 )