By Topic

A Study on Universal Codes With Finite Block Lengths

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Shi ; Qualcomm Inc., San Diego ; Richard D. Wesel

Based on random codes and typical set decoding, an alternative proof of Root and Varaiya's compound channel coding theorem for linear Gaussian channels is presented. The performance limit of codes with finite block length under a compound channel is studied through error bounds and simulation. Although the theorem promises uniform convergence of the probability of error as the block length approaches infinity, with short block lengths the performance can differ considerably for individual channels. Simulation results show that universal performance can be a practical goal as the block lengths become large.

Published in:

IEEE Transactions on Information Theory  (Volume:53 ,  Issue: 9 )