By Topic

On Polar Polytopes and the Recovery of Sparse Representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mark D. Plumbley ; Queen Mary Univ. of London, London

Suppose we have a signal y which we wish to represent using a linear combination of a number of basis atoms ai,y=Sigmaixiai=Ax. The problem of finding the minimum l0 norm representation for y is a hard problem. The basis pursuit (BP) approach proposes to find the minimum l1 norm representation instead, which corresponds to a linear program (LP) that can be solved using modern LP techniques, and several recent authors have given conditions for the BP (minimum l1 norm) and sparse (minimum l0 norm) representations to be identical. In this paper, we explore this sparse representation problem using the geometry of convex polytopes, as recently introduced into the field by Donoho. By considering the dual LP we find that the so-called polar polytope P* of the centrally symmetric polytope P whose vertices are the atom pairs plusmnai is particularly helpful in providing us with geometrical insight into optimality conditions given by Fuchs and Tropp for non-unit-norm atom sets. In exploring this geometry, we are able to tighten some of these earlier results, showing for example that a condition due to Fuchs is both necessary and sufficient for l1-unique-optimality, and there are cases where orthogonal matching pursuit (OMP) can eventually find all l1-unique-optimal solutions with m nonzeros even if the exact recover condition (ERC) fails for m.

Published in:

IEEE Transactions on Information Theory  (Volume:53 ,  Issue: 9 )