By Topic

Cyclic Algebras for Noncoherent Differential Space–Time Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
FrÉdÉrique Oggier ; California Inst. of Technol., Pasadena

We investigate cyclic algebras for coding over the differential noncoherent channel. Cyclic algebras are an algebraic object that became popular for coherent space-time coding, since it naturally yields linear families of matrices with full diversity. Coding for the differential noncoherent channel has a similar flavor in the sense that it asks for matrices that achieve full diversity, except that these matrices furthermore have to be unitary. In this work, we give a systematic way to find infinitely many unitary matrices inside cyclic algebras, which holds for all dimensions. We show how cyclic algebras generalize previous families of unitary matrices obtained using the representation of fixed-point-free groups. As an application of our technique, we present families of codes for three and four antennas that achieve high coding gain.

Published in:

IEEE Transactions on Information Theory  (Volume:53 ,  Issue: 9 )