By Topic

Optimal Energy and Delay Tradeoffs for Multiuser Wireless Downlinks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Neely, M.J. ; Univ. of Southern California, Los Angeles

We consider the fundamental delay tradeoffs for minimizing energy expenditure in a multiuser wireless downlink with randomly varying channels. First, we extend the Berry-Gallager bound to a multiuser context, demonstrating that any algorithm that yields average power within O(1/V) of the minimum power required for network stability must also have an average queueing delay greater than or equal to Omega(radicV). We then develop a class of algorithms, parameterized by V, that come within a logarithmic factor of achieving this fundamental tradeoff. The algorithms overcome an exponential state-space explosion, and can be implemented in real time without a priori knowledge of traffic rates or channel statistics. Further, we discover a ldquosuperfastrdquo scheduling mode that beats the Berry-Gallager bound in the exceptional case when power functions are piecewise linear.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 9 )