By Topic

Rank-2-Optimal Adaptive Design of Binary Spreading Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karystinos, G.N. ; Tech.Univ.of Crete, Chania ; Pados, D.A.

Over the real/complex field, the spreading code that maximizes the signal-to-interference-plus-noise ratio (SINR) at the output of the maximum-SINR linear filter is the minimum-eigenvalue eigenvector of the interference autocovariance matrix. In the context of binary spreading codes, the maximization problem is NP-hard with complexity exponential in the code length. A new method for the optimization of binary spreading codes under a rank-2 approximation of the inverse interference autocovariance matrix is presented where the rank-2-optimal binary code is obtained in lower than quadratic complexity. Significant SINR performance improvement is demonstrated over the common binary hard-limited eigenvector design which is shown to be equivalent to the rank-1-optimal solution.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 9 )