By Topic

Blind Minimax Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ben-Haim, Z. ; Technion-Israel Inst. of Technol., Haifa ; Eldar, Y.C.

We consider the linear regression problem of estimating an unknown, deterministic parameter vector based on measurements corrupted by colored Gaussian noise. We present and analyze blind minimax estimators (BMEs), which consist of a bounded parameter set minimax estimator, whose parameter set is itself estimated from measurements. Thus, our approach does not require any prior assumption or knowledge, and the proposed estimator can be applied to any linear regression problem. We demonstrate analytically that the BMEs strictly dominate the least-squares (LS) estimator, i.e., they achieve lower mean-squared error (MSE) for any value of the parameter vector. Both Stein's estimator and its positive-part correction can be derived within the blind minimax framework. Furthermore, our approach can be readily extended to a wider class of estimation problems than Stein's estimator, which is defined only for white noise and nontransformed measurements. We show through simulations that the BMEs generally outperform previous extensions of Stein's technique.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 9 )