Cart (Loading....) | Create Account
Close category search window
 

Cloud Properties Derived From GOME/ERS-2 Backscatter Data for Trace Gas Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Rodriguez, D.G.L. ; Deutsches Zentrum fur Luft- und Raumfahrt, Oberpfaffenhofen ; Thomas, W. ; Livschitz, Y. ; Ruppert, T.
more authors

We focus on the retrieval of cloud properties appropriate for trace gas retrieval from sun-normalized ultraviolet/visible backscatter spectra obtained from the Global Ozone Monitoring Experiment (GOME) onboard the European Space Agency's European Remote Sensing 2 Satellite (ERS-2). Retrieved quantities are the fractional cloud coverage of the GOME footprint, the cloud-top albedo, and the cloud-top height. A data fusion technique is applied to calculate the fractional cloud cover of GOME footprints from GOME's polarization measurement devices. Furthermore, cloud-top albedo and cloud-top height are retrieved simultaneously from GOME measurements around the oxygen A-band by a neural network approach. We compare our results with corresponding results from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer onboard the first European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) METEOSAT Second Generation 1 geostationary spacecraft. Our analysis revealed that GOME-derived basic cloud properties are of remarkably high quality. GOME slightly underestimates the cloud coverage of footprints, which was expected since GOME is mainly sensitive to optically thick water clouds. GOME measurements are limited to the ultraviolet and visible part of the solar spectrum, which hampers the detection of optically thin clouds. For both the cloud-top height and the cloud-top albedo, we found a small bias relative to SEVIRI results. The overall uncertainty of retrieved total ozone columns with respect to cloud parameters is about 1%-2%. Our approach is applied to the operational processing of GOME/ERS-2 and will be applied to GOME-2/METOP (launched in 2006) in the framework of EUMETSAT's Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF).

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 9 )

Date of Publication:

Sept. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.