Cart (Loading....) | Create Account
Close category search window
 

Backward Wave Excitation and Generation of Oscillations in Free-Electron Lasers in the Absence of Feedback—Beyond the High Gain Approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pinhasi, Y. ; Coll. of Judea and Samaria, Ariel ; Yahalom, A. ; Lurie, Y. ; Pinhasi, G.A.

Quantum and free-electron lasers (FELs) are based on distributed interactions between electromagnetic radiation and gain media. In an amplifier configuration, a forward wave is amplified while propagating in a polarized medium. Formulating a coupled mode theory for excitation of both forward and backward waves, we identify conditions, leading to efficient excitation of backward wave without any mechanism of feedback or resonator assembly. The excitations of incident and reflected waves are described by a set of coupled differential equations expressed in the frequency domain. The induced polarization is given in terms of an electronic susceptibility tensor. In quantum lasers the interaction is described by two first-order differential equations. In FELs, the excitation of the forward and backward modes is described by two coupled third-order differential equations. In our previous investigation analytical and numerical solutions of reflectance and transmittance for both quantum lasers and high-gain FELs were presented. In this work we extend the study to a general FEL without restriction of the high-gain approximation. It is found that when the solutions become infinite, the device operates as an oscillator, producing radiation at the output with no Held at its input, entirely without any localized or distributed feedback.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 10 )

Date of Publication:

Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.