Cart (Loading....) | Create Account
Close category search window
 

Fast Positive-Real Balanced Truncation Via Quadratic Alternating Direction Implicit Iteration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ngai Wong ; Univ. of Hong Kong, Hong Kong ; Balakrishnan, V.

Balanced truncation (BT), as applied to date in model order reduction (MOR), is known for its superior accuracy and computable error bounds. Positive-real BT (PRBT) is a particular BT procedure that preserves passivity and stability and imposes no structural constraints on the original state space. However, PRBT requires solving two algebraic Riccati equations (AREs), whose computational complexity limits its practical use in large-scale systems. This paper introduces a novel quadratic extension of the alternating direction implicit (ADI) iteration, which is called quadratic ADI (QADI), that efficiently solves an ARE. A Cholesky factor version of QADI, which is called CFQADI, exploits low-rank matrices and further accelerates PRBT.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:26 ,  Issue: 9 )

Date of Publication:

Sept. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.