By Topic

High-Performance Control of Piezoelectric Tube Scanners

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, a piezoelectric tube of the type typically used in scanning tunneling microscopes (STMs) and atomic force microscopes (AFMs) is considered. Actuation of this piezoelectric tube is hampered by the presence of a lightly damped low-frequency resonant mode. The resonant mode is identified and damped using a positive velocity and position feedback (PVPF) controller, a control technique proposed in this paper. Input signals are then shaped such that the closed-loop system tracks a raster pattern. Normally, piezoelectric tubes are actuated using voltage amplifiers. Nonlinearity in the form of hysteresis is observed when actuating the piezoelectric tubes at high amplitudes using voltage amplifiers. It has been known for some time that hysteresis in piezoelectric actuators can be largely compensated by actuating them using charge amplifiers. In this paper, high-amplitude actuation of a piezoelectric tube is achieved using a charge amplifier.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:15 ,  Issue: 5 )