By Topic

Modeling Spin-Polarized Electron Transport in Semiconductors for Spintronics Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kos, S. ; Los Alamos Nat. Lab., Los Alamos ; Hruska, M. ; Crooker, S.A. ; Saxena, Avadh
more authors

A primary goal in semiconductor spintronics is to develop a new generation of functional devices that exploit not only an electron's charge (as in today's electronics industry) but also its spin. The authors show how a system of coupled spin drift-diffusion equations can accurately model spin-polarized electron transport in semiconductors. Numerical solutions allow for direct and quantitative comparison with experimental imaging data.

Published in:

Computing in Science & Engineering  (Volume:9 ,  Issue: 5 )