By Topic

Facial Action Unit Recognition by Exploiting Their Dynamic and Semantic Relationships

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yan Tong ; Rensselaer Polytech. Inst., Troy ; Wenhui Liao ; Qiang Ji

A system that could automatically analyze the facial actions in real time has applications in a wide range of different fields. However, developing such a system is always challenging due to the richness, ambiguity, and dynamic nature of facial actions. Although a number of research groups attempt to recognize facial action units (AUs) by improving either the facial feature extraction techniques or the AU classification techniques, these methods often recognize AUs or certain AU combinations individually and statically, ignoring the semantic relationships among AUs and the dynamics of AUs. Hence, these approaches cannot always recognize AUs reliably, robustly, and consistently. In this paper, we propose a novel approach that systematically accounts for the relationships among AUs and their temporal evolutions for AU recognition. Specifically, we use a dynamic Bayesian network (DBN) to model the relationships among different AUs. The DBN provides a coherent and unified hierarchical probabilistic framework to represent probabilistic relationships among various AUs and to account for the temporal changes in facial action development. Within our system, robust computer vision techniques are used to obtain AU measurements. Such AU measurements are then applied as evidence to the DBN for inferring various AUs. The experiments show that the integration of AU relationships and AU dynamics with AU measurements yields significant improvement of AU recognition, especially for spontaneous facial expressions and under more realistic environment including illumination variation, face pose variation, and occlusion.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 10 )