By Topic

Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Design and control of vector fields is critical for many visualization and graphics tasks such as vector field visualization, fluid simulation, and texture synthesis. The fundamental qualitative structures associated with vector fields are fixed points, periodic orbits, and separatrices. In this paper, we provide a new technique that allows for the systematic creation and cancellation of fixed points and periodic orbits. This technique enables vector field design and editing on the plane and surfaces with desired qualitative properties. The technique is based on Conley theory, which provides a unified framework that supports the cancellation of fixed points and periodic orbits. We also introduce a novel periodic orbit extraction and visualization algorithm that detects, for the first time, periodic orbits on surfaces. Furthermore, we describe the application of our periodic orbit detection and vector field simplification algorithms to engine simulation data demonstrating the utility of the approach. We apply our design system to vector field visualization by creating data sets containing periodic orbits. This helps us understand the effectiveness of existing visualization techniques. Finally, we propose a new streamline-based technique that allows vector field topology to be easily identified.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:13 ,  Issue: 4 )