By Topic

PAPR Reduction of OFDM Signals Using Partial Transmit Sequences With Low Computational Complexity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Partial transmit sequences (PTS) is one of the attractive techniques to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) system. As conventional PTS technique requires an exhaustive searching over all the combinations of the given phase factors, which results in the computational complexity increases exponentially with the number of the sub-blocks. In this paper, we aim to obtain the desirable PAPR reduction with the low computational complexity. Since the process of searching the optimal phase factors can be categorized as combinatorial optimization with some variables and constraints, we propose a novel scheme, which is based on a nonlinear optimization approach named as simulated annealing (SA), to search the optimal combination of phase factors with low complexity. To validate the analytical results, extensive simulations have been conducted, showing that the proposed schemes can achieve significant reduction in computational complexity while keeping good PAPR reduction.

Published in:

Broadcasting, IEEE Transactions on  (Volume:53 ,  Issue: 3 )