Cart (Loading....) | Create Account
Close category search window
 

Effect of Post-Annealing on the Magnetic Properties of Bi:YIG Film by RF Magnetron Sputtering on Si Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yang, Qinghui ; Univ. of Electron. Sci. & Technol. of China, Sichuan ; Huaiwu, Zhang ; Liu Yingli ; Qiye, Wen

We deposited amorphous Bi:YIG film on Si substrates by radio-frequency (RF) magnetron sputtering and crystallized it by the recurrent rapid thermal annealing (RRTA) method. We studied the effects of heating temperature on the crystallization, surface condition, and magnetic properties of the films using X-ray diffraction, an atomic force microscope, and a vibrating sample magnetometer. We also examined the effects of atmosphere and the recurrent period on the films. Our results show that the RRTA method yields film with good magnetic properties, with saturation magnetization of 1750 Gs and coercive force of 80 Oe and good surface condition.

Published in:

Magnetics, IEEE Transactions on  (Volume:43 ,  Issue: 9 )

Date of Publication:

Sept. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.