Cart (Loading....) | Create Account
Close category search window
 

A Semiautomatic Approach to Deriving Turbine Generator Diagnostic Knowledge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Todd, M. ; Strathclyde Univ., Glasgow ; McArthur, S.D.J. ; McDonald, J.R. ; Shaw, S.J.

Condition monitoring of turbine generators, housed at British Energy nuclear power stations throughout the U.K., is implemented to diagnose incipient faults at an early stage, so corrective action can be taken to avoid the associated high costs of an unplanned shutdown. A prototype expert system has been developed that provides decision support to condition monitoring experts who monitor British Energy turbine generators. The expert system automatically interprets data from strategically positioned sensors and transducers on the turbine generator by applying expert knowledge in the form of heuristic rules. This paper reviews the application domain and describes the work undertaken in developing the prototype expert system. The paper also outlines a learning module design that uses an approach based on an analytical symbolic machine learning technique, explanation-based generalization, to semiautomatically derive heuristic rules for turbine generator fault diagnosis. The approach adopted by the learning module is explained in detail and a worked example demonstrates how the learning module can derive a fault heuristic from a single training example. The modular approach to capturing the causal fault and behavioral models is described, and the method in which the module will be integrated with the existing expert system has been outlined. A preliminary evaluation of the learning module design is discussed.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:37 ,  Issue: 5 )

Date of Publication:

Sept. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.