By Topic

Linear Cascade Arrays of GaN-Based Green Light-Emitting Diodes for High-Speed and High-Power Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Shi, J.-W. ; Nat. Central Univ., Taoyuan ; Sheu, J.K. ; Wang, C.K. ; Chen, C.-C.
more authors

In the following study, we demonstrated linear cascade GaN-based light-emitting-diode (LED) arrays at a wavelength of approximately 520 nm. Experimental LEDs were analyzed with the goal to improve the output power and differential efficiency of a single LED. The study shows that using arrays with up to four LEDs connected in series, we can achieve four times the improvement in output power (differential quantum efficiency) under the same bias current as compared to a single LED apparatus. We have also measured the modulation-speed performance of experimental LEDs, and both devices exhibit similar 3-dB bandwidth (90 MHz) under the same bias currents. Experimental results indicate that the cascade connection offers the advantages of significantly enhanced external differential efficiency and provision of a method to use a constant-voltage power supply. The current crowding problem and resistance-capacitance-limited bandwidth degradation issues in a large active area LED can also be minimized using the connection demonstrated in our experiment.

Published in:

Photonics Technology Letters, IEEE  (Volume:19 ,  Issue: 18 )