By Topic

A Hybrid Compression Method for Integral Images Using Discrete Wavelet Transform and Discrete Cosine Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
E. Elharar ; Ben Gurion Univ. of the Negev, Beer-Sheva ; Adrian Stern ; Ofer Hadar ; Bahram Javidi

Integral imaging (II) is a promising three-dimensional (3-D) imaging technique that uses an array of diffractive or refractive optical elements to record the 3-D information on a conventional digital sensor. With II, the object information is recorded in the form of an array of subimages, each representing a slightly different perspective of the object In order to obtain high-quality 3-D images, digital sensors with a large number of pixels are required. Consequently, high-quality II involves recording and processing large amounts of data. In this paper, we present a compression method developed for the particular characteristics of the digitally recorded integral image. The compression algorithm is based on a hybrid technique implementing a four-dimensional transform combining the discrete wavelet transform and the discrete cosine transform. The proposed algorithm outperforms the baseline JPEG compression scheme applied to II and a previous compression method developed for II based on MPEG II.

Published in:

Journal of Display Technology  (Volume:3 ,  Issue: 3 )