Cart (Loading....) | Create Account
Close category search window

Stacked OSTBC: Error Performance and Rate Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sezgin, A. ; Heinrich-Hertz-Inst., Berlin ; Henkel, Oliver

It is well known that the Alamouti scheme is the only space-time code from orthogonal designs achieving the capacity of a multiple-input multiple-output (MIMO) wireless communication system with nT=2 transmit antennas and nR=1 receive antenna. In this paper, we propose the n-times stacked Alamouti scheme for nT=2n transmit antennas and show that this scheme achieves the capacity in the case of nR=1 receive antenna. This result may regarded as an extension of the Alamouti case. For the more general case of more than one receive antenna, we show that if the number of transmit antennas is higher than the number of receive antennas, we achieve a high portion of the capacity with this scheme. Further, we show that the MIMO capacity is at most twice the rate achieved with the proposed scheme for all signal-to-noise ratio (SNR). We derive lower and upper bounds for the rate achieved with this scheme and compare it with upper and lower bounds for the capacity. In addition to the capacity analysis based on the assumption of a coherent channel, we analyze the error rate performance of the stacked orthogonal space-time block code (OSTBC) with the optimal maximum-likelihood (ML) detector and with the suboptimal lattice-reduction (LR)-aided zero-forcing detector. We compare the error rate performance of the stacked OSTBC with spatial multiplexing (SM) and full-diversity achieving schemes. Finally, we illustrate the theoretical results by numerical simulations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 9 )

Date of Publication:

Sept. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.