Cart (Loading....) | Create Account
Close category search window
 

Multichannel Blind Source Separation Using Convolution Kernel Compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Holobar, A. ; Politecnico di Torino, Torino ; Zazula, D.

This paper studies a novel decomposition technique, suitable for blind separation of linear mixtures of signals comprising finite-length symbols. The observed symbols are first modeled as channel responses in a multiple-input-multiple-output (MIMO) model, while the channel inputs are conceptually considered sparse positive pulse trains carrying the information about the symbol arising times. Our decomposition approach compensates channel responses and aims at reconstructing the input pulse trains directly. The algorithm is derived first for the overdetermined noiseless MIMO case. A generalized scheme is then provided for the underdetermined mixtures in noisy environments. Although blind, the proposed technique approaches Bayesian optimal linear minimum mean square error estimator and is, hence, significantly noise resistant. The results of simulation tests prove it can be applied to considerably underdetermined convolutive mixtures and even to the mixtures of moderately correlated input pulse trains, with their cross-correlation up to 10% of its maximum possible value.

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 9 )

Date of Publication:

Sept. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.