Cart (Loading....) | Create Account
Close category search window

Analyzing Product-Form Stochastic Networks Via Factor Graphs and the Sum-Product Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian Ni ; Yale Univ., New Haven ; Tatikonda, S.

A large number of stochastic networks including loss networks and certain queueing networks have product-form steady-state probabilities. However, for most practical networks, evaluating the system performance is a difficult task due to the presence of a normalization constant. We propose a new framework based on probabilistic graphical models to tackle this task. Specifically, we use factor graphs to model the stationary distribution of a network. For networks with arbitrary topology, we can apply efficient message-passing algorithms like the sum-product algorithm to compute the exact or approximate marginal distributions of all state variables and related performance measures such as blocking probabilities. Through extensive numerical experiments, we show that the sum-product algorithm returns very accurate blocking probabilities and greatly outperforms the reduced load approximation for loss networks with a variety of topologies. The factor graph model also provides a promising approach for analyzing product-form queueing networks.

Published in:

Communications, IEEE Transactions on  (Volume:55 ,  Issue: 8 )

Date of Publication:

Aug. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.