By Topic

VHDL-AMS Modeling of Total Ionizing Dose Radiation Effects on CMOS Mixed Signal Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mikkola, E.O. ; Arizona Electr. Univ., Tucson ; Vermeire, B. ; Parks, H.G. ; Graves, R.

A hierarchical method for total dose effects simulation of large mixed signal circuits using VHDL-AMS is described. Simplified behavioral models (or macro-models) of small sub-circuits replace SPICE-level circuits. The behavioral models describe the electrical circuit behavior and its dependence on the radiation dose. The behavioral models of sub-circuits can be assembled into complex mixed signal circuits. As a result, the computational cost is reduced significantly compared to conventional SPICE-based methods. The VHDL-AMS method also allows bias-dependent total dose degradation to be coupled to the circuit and operational conditions. Simulation accuracy remains sufficient to determine critical performance metrics of the circuit as the circuit performance degrades with dose.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:54 ,  Issue: 4 )