By Topic

Models and Algorithmic Limits for an ECC-Based Approach to Hardening Sub-100-nm SRAMs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Bajura, M.A. ; Southern California Viterbi Univ., Marina Del Rey ; Boulghassoul, Y. ; Naseer, R. ; DasGupta, Sandeepan
more authors

A mathematical bit error rate (BER) model for upsets in memories protected by error-correcting codes (ECCs) and scrubbing is derived. This model is compared with expected upset rates for sub-100-nm SRAM memories in space environments. Because sub-100-nm SRAM memory cells can be upset by a critical charge (Qcrit) of 1.1 fC or less, they may exhibit significantly higher upset rates than those reported in earlier technologies. Because of this, single-bit-correcting ECCs may become impractical due to memory scrubbing rate limitations. The overhead needed for protecting memories with a triple-bit-correcting ECC is examined relative to an approximate 2X ldquoprocess generationrdquo scaling penalty in area, speed, and power.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:54 ,  Issue: 4 )