By Topic

Phase Resetting in One-Dimensional Model of the Sinoatrial Node

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, we use a one-dimensional model of the rabbit sinoatrial node (SAN), and we investigate the response of the model to hyperpolarizing and depolarizing stimulus. Depending on the stimulus timing, either a delay or an advance in the occurrence of next action potential is produced. This resetting behavior of the model is quantified in terms of phase transition curves (PTCs) for short electrical current pulses of varying amplitude which span the whole period. The main focus of this paper is to compare the dynamic properties of the spatially extended system and the single cell model. The detailed analysis of the results provides new insights in the understanding of the transition from the theoretical single cell models to the spatially extended systems.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:54 ,  Issue: 9 )