Cart (Loading....) | Create Account
Close category search window
 

fMRI Data Analysis With Nonstationary Noise Models: A Bayesian Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huaien Luo ; National University of Singapore, Singapore ; Puthusserypady, S.

The assumption of noise stationarity in the functional magnetic resonance imaging (fMRI) data analysis may lead to the loss of crucial dynamic features of the data and thus result in inaccurate activation detection. In this paper, a Bayesian approach is proposed to analyze the fMRI data with two nonstationary noise models (the time-varying variance noise model and the fractional noise model). The covariance matrices of the time-varying variance noise and the fractional noise after wavelet transform are diagonal matrices. This property is investigated under the Bayesian framework. The Bayesian estimator not only gives an accurate estimate of the weights in general linear model, but also provides posterior probability of activation in a voxel and, hence, avoids the limitations (i.e., using only hypothesis testing) in the classical methods. The performance of the proposed Bayesian methods (under the assumption of different noise models) are compared with the ordinary least squares (OLS) and the weighted least squares (WLS) methods. Results from the simulation studies validate the superiority of the proposed approach to the OLS and WLS methods considering the complex noise structures in the fMRI data.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:54 ,  Issue: 9 )

Date of Publication:

Sept. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.