By Topic

Automatic Identification and Removal of Scalp Reference Signal for Intracranial EEGs Based on Independent Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sanqing Hu ; Mayo Clinic, Rochester ; Matt Stead ; Gregory A. Worrell

The pursuit of an inactive recording reference is one of the oldest technical problems in electroencephalography (EEG). Since commonly used cephalic references contaminate EEG and can lead to misinterpretation, extraction of the reference contribution is of fundamental interest. Here, we apply independent component analysis (ICA) to intracranial recordings and propose two methods to automatically identify and remove the reference based on the assumption that the scalp reference is independent from the local and distributed intracranial sources. This assumption, supported by our results, is generally valid because the reference scalp electrode is relatively electrically isolated from the intracranial electrodes by the skull's high resistivity. We point out that the linear model is underdetermined when the reference is considered as a source, and discuss one special underdetermined case for which a unique class of outputs can be separated. For this case most ICA algorithms can be applied, and we argue that intracranial or scalp EEGs follow this special case. We apply the two proposed methods to intracranial EEGs from three patients undergoing evaluation for epilepsy surgery, and compare the results to bipolar and average reference recordings. The proposed methods should have wide application in quantitative EEG studies.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:54 ,  Issue: 9 )