By Topic

A New Heart Rate Variability Analysis Method by Means of Quantifying the Variation of Nonlinear Dynamic Patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hang Ding ; Queensland Univ., Brisbane ; Crozier, S. ; Wilson, S.

A new heart rate variability (HRV) analysis method, quantifying the variation of nonlinear dynamic pattern (VNDP) in heart rate series, is proposed and validated against the age stratified Fantasia database. The method is based on three processes: 1) a recurrence quantification analysis (RQA) to quantify the dynamic patterns, 2) the use of mutual information (MI) and the entropy (EN) to characterize the VNDP, and 3) linear discriminant analysis to exploit the associations within MI and EN measures. Practically, the VNDP method overcomes the nonstationarity problem and exploits the nonstationary properties in HRV analyses. Physiologically, the VNDP reflects the properties of the fundamental short-term HRV dynamic system and the external associations of the system within the autonomous nervous system (ANS). The characteristic probability density peaks portrayed by VNDP plots indicate the quantum-like heart dynamics, which may provide valuable insights into the control of the ANS. The discrimination results of the reduced pattern dynamic range due to aging, from a new perspective, display the reduction in HRV. The significantly improved discriminatory power, compared to conventional RQA analyses, shows that the VNDP analysis can practically quantify the nonstationary nonlinear dynamics for ANS assessments.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:54 ,  Issue: 9 )