By Topic

A Network-Aware Approach for Video and Metadata Streaming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aravindan Raghuveer ; Minnesota Univ., Minneapolis ; Ewa Kusmierek ; David. H. C. Du

Providing quality of service (QoS) for Internet-based video streaming applications requires the server and/or client to be network-aware and adaptive. We present a dynamic rate and quality adaptation algorithm where the server varies its sending rate (without varying the quality level) to adapt to the network and client conditions and only as a last resort, does quality adaptation. We place the adaptation logic at the client since it has better knowledge about both the demand (buffer conditions, variable bit-rate requirements) and supply (network conditions). Our approach is unique because the server's sending rate is calculated based on the client's varying demand (consumption rate) and the network status. Also, we do not model the network as a black-box but instead augment endpoint observations with a feedback from the network to represent its status more precisely. To make an informed adaptation decision, the client requires sizes of all frames in the variable bit rate video. But the overhead involved in sending this metadata is significant. So we propose a lossy compression technique to reduce the amount of control information and consequently the overhead. We also present a scheduling algorithm, dynamic scheduling algorithm for reduced trace delivery (DART), to deliver the compressed control information to the client. This algorithm can be used to deliver any form of metadata (like subtitles, alerts, etc.), especially in applications like IP-TV. Simulations show that the proposed techniques can significantly improve user perceived QoS when compared to other popular adaptation methods.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:17 ,  Issue: 8 )